Performance comparison of publicly available retinal blood vessel segmentation methods
نویسندگان
چکیده
Retinal blood vessel structure is an important indicator of many retinal and systemic diseases, which has motivated the development of various image segmentation methods for the blood vessels. In this study, two supervised and three unsupervised segmentation methods with a publicly available implementation are reviewed and quantitatively compared with each other on five public databases with ground truth segmentation of the vessels. Each method is tested under consistent conditions with two types of preprocessing, and the parameters of the methods are optimized for each database. Additionally, possibility to predict the parameters of the methods by the linear regression model is tested for each database. Resolution of the input images and amount of the vessel pixels in the ground truth are used as predictors. The results show the positive influence of preprocessing on the performance of the unsupervised methods. The methods show similar performance for segmentation accuracy, with the best performance achieved by the method by Azzopardi et al. (Acc 94.0) on ARIADB, the method by Soares et al. (Acc 94.6, 94.7) on CHASEDB1 and DRIVE, and the method by Nguyen et al. (Acc 95.8, 95.5) on HRF and STARE. The method by Soares et al. performed better with regard to the area under the ROC curve. Qualitative differences between the methods are discussed. Finally, it was possible to predict the parameter settings that give performance close to the optimized performance of each method.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملBlood vessel segmentation methodologies in retinal images - A survey
Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. This work examines the blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera and a survey of techniques is presented. The aim of this paper is to review, analyze and categorize the retinal vessel extraction algorithms, techniques an...
متن کاملAutomated Retinal Vessel Segmentation Using Morphological Operation And Threshold
Assessment of retinal vessel is an important factor for the many medical disorders. The retinal vessel analysis can be done by first extracting the retinal images from the background. The changes in the retinal vessels due to the pathologies can be easily identified by segmenting the retinal vessels. In this paper we describe the automatic methods for retinal vessel segmentation. Segmentation o...
متن کاملDetection of Retinal Blood Vessels from Ophthalmoscope Images Using Morphological Approach
Accurate segmentation of retinal blood vessels is an essential task for diagnosis of various pathological disorders. In this paper, a novel method has been introduced for segmenting retinal blood vessels which involves pre-processing, segmentation and post-processing. The pre-processing stage enhanced the image using contrast limited adaptive histogram equalization and 2D Gabor wavelet. The enh...
متن کاملAutomatic detection of multiple oriented blood vessels in retinal images
Automatic segmentation of the vasculature in retinal images is important in the detection of diabetic retinopathy that affects the morphology of the blood vessel tree. In this paper, a hybrid method for efficient segmentation of multiple oriented blood vessels in colour retinal images is proposed. Initially, the appearance of the blood vessels are enhanced and background noise is suppressed wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
دوره 55 شماره
صفحات -
تاریخ انتشار 2017